\(\int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [620]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 433 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 \left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 (a+2 b) (4 A b+a (A-3 B)) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d} \]

[Out]

2*b*(A*b-B*a)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)+2/3*(A*a^2-4*A*b^2+3*B*a*b)*sec
(d*x+c)^(3/2)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a^2/(a^2-b^2)/d-2/3*(5*A*a^2*b-8*A*b^3-3*B*a^3+6*B*a*b^2)*csc(
d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*cos(d*x+c)^(1/2)*(a
*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^4/d/(a+b)^(1/2)/sec(d*x+c)^(1/2)+2/3*(a+2*b)*(4*
A*b+a*(A-3*B))*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*
cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d/(a+b)^(1/2)/sec(d*x+c)^(1
/2)

Rubi [A] (verified)

Time = 1.37 (sec) , antiderivative size = 433, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3040, 3079, 3134, 3077, 2895, 3073} \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 (a+2 b) (a (A-3 B)+4 A b) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{3 a^3 d \sqrt {a+b} \sqrt {\sec (c+d x)}}+\frac {2 \left (a^2 A+3 a b B-4 A b^2\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}{3 a^2 d \left (a^2-b^2\right )}+\frac {2 b (A b-a B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}-\frac {2 \left (-3 a^3 B+5 a^2 A b+6 a b^2 B-8 A b^3\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{3 a^4 d \sqrt {a+b} \sqrt {\sec (c+d x)}} \]

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2))/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(-2*(5*a^2*A*b - 8*A*b^3 - 3*a^3*B + 6*a*b^2*B)*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Co
s[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(
a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^4*Sqrt[a + b]*d*Sqrt[Sec[c + d*x]]) + (2*(a + 2*b)*(4*A*b + a*(A - 3*B))*
Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -
((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(3*a^3*Sqrt[a +
b]*d*Sqrt[Sec[c + d*x]]) + (2*b*(A*b - a*B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Cos[c
 + d*x]]) + (2*(a^2*A - 4*A*b^2 + 3*a*b*B)*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^2*(a
^2 - b^2)*d)

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3040

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Sin[e + f*x])^m*((
c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3079

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*
(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n
, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}} \, dx \\ & = \frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} \left (a^2 A-4 A b^2+3 a b B\right )-\frac {1}{2} a (A b-a B) \cos (c+d x)+b (A b-a B) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{a \left (a^2-b^2\right )} \\ & = \frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} \left (-5 a^2 A b+8 A b^3+3 a^3 B-6 a b^2 B\right )+\frac {1}{4} a \left (a^2 A+2 A b^2-3 a b B\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )} \\ & = \frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d}-\frac {\left (\left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )}+\frac {\left (4 \left (\frac {1}{4} a \left (a^2 A+2 A b^2-3 a b B\right )+\frac {1}{4} \left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right )\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )} \\ & = -\frac {2 \left (5 a^2 A b-8 A b^3-3 a^3 B+6 a b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 (a+2 b) (4 A b+a (A-3 B)) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 \sqrt {a+b} d \sqrt {\sec (c+d x)}}+\frac {2 b (A b-a B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^2 A-4 A b^2+3 a b B\right ) \sqrt {a+b \cos (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right ) d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 16.32 (sec) , antiderivative size = 498, normalized size of antiderivative = 1.15 \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (-2 (a+b) \left (-5 a^2 A b+8 A b^3+3 a^3 B-6 a b^2 B\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 a \left (a^2-a b-2 b^2\right ) (-4 A b+a (A+3 B)) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )-\left (-5 a^2 A b+8 A b^3+3 a^3 B-6 a b^2 B\right ) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)} \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}+\frac {\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \left (-5 a^2 A b+8 A b^3+3 a^3 B-6 a b^2 B\right ) \sin (c+d x)}{3 a^3 \left (a^2-b^2\right )}+\frac {2 \left (-A b^3 \sin (c+d x)+a b^2 B \sin (c+d x)\right )}{a^2 \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {2 A \tan (c+d x)}{3 a^2}\right )}{d} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^(5/2))/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(-2*(a + b)*(-5*a^2*A*b + 8*A*b^3 + 3*a^3*B - 6*a*b^2*B)*Sqrt[Cos[c +
 d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*
x)/2]], (-a + b)/(a + b)] + 2*a*(a^2 - a*b - 2*b^2)*(-4*A*b + a*(A + 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x]
)]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b
)] - (-5*a^2*A*b + 8*A*b^3 + 3*a^3*B - 6*a*b^2*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c
+ d*x)/2]))/(3*a^3*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) + (Sqrt[a + b*Cos[c + d*x]
]*Sqrt[Sec[c + d*x]]*((2*(-5*a^2*A*b + 8*A*b^3 + 3*a^3*B - 6*a*b^2*B)*Sin[c + d*x])/(3*a^3*(a^2 - b^2)) + (2*(
-(A*b^3*Sin[c + d*x]) + a*b^2*B*Sin[c + d*x]))/(a^2*(a^2 - b^2)*(a + b*Cos[c + d*x])) + (2*A*Tan[c + d*x])/(3*
a^2)))/d

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(3849\) vs. \(2(395)=790\).

Time = 25.29 (sec) , antiderivative size = 3850, normalized size of antiderivative = 8.89

method result size
parts \(\text {Expression too large to display}\) \(3850\)
default \(\text {Expression too large to display}\) \(4714\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3*A/d*(-(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1))^(5/2)*(csc(d*x+c)^2*(1-cos(d*x+
c))^2-1)*(5*csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b*(-csc(d*x+c)^2*(1-cos(d*x
+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x
+c))^2-5*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*
((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+2*EllipticF(cot(d*x+c)-csc
(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))
^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+8*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a
*b^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^
2+a+b)/(a+b))^(1/2)+5*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b*(-csc(d*x+c)^2*(1-cos(d*x+c)
)^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)+5*EllipticE(c
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(
1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)-8*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a
+b))^(1/2))*a*b^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1
-cos(d*x+c))^2+a+b)/(a+b))^(1/2)-csc(d*x+c)^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*(-csc(
d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b
))^(1/2)*(1-cos(d*x+c))^2-8*csc(d*x+c)^5*b^4*(1-cos(d*x+c))^5-2*csc(d*x+c)^3*a^4*(1-cos(d*x+c))^3+16*csc(d*x+c
)^3*b^4*(1-cos(d*x+c))^3+3*a^3*b*(csc(d*x+c)-cot(d*x+c))+7*a^2*b^2*(csc(d*x+c)-cot(d*x+c))-2*csc(d*x+c)^2*Elli
pticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c
)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-8*csc(d*x+c)^2*Ellip
ticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2
*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-5*csc(d*x+c)^2*Elliptic
E(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3*b*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*
(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-5*csc(d*x+c)^2*EllipticE(c
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b^2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(
1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2+8*csc(d*x+c)^2*EllipticE(co
t(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^3*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-c
os(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1-cos(d*x+c))^2-5*csc(d*x+c)^5*a^3*b*(1-cos(d*
x+c))^5-8*csc(d*x+c)^3*a*b^3*(1-cos(d*x+c))^3+5*csc(d*x+c)^5*a^2*b^2*(1-cos(d*x+c))^5+8*csc(d*x+c)^5*a*b^3*(1-
cos(d*x+c))^5+2*csc(d*x+c)^3*a^3*b*(1-cos(d*x+c))^3-8*csc(d*x+c)^3*a^2*b^2*(1-cos(d*x+c))^3+EllipticF(cot(d*x+
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^4*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c
))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)-8*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))
*b^4*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^
2+a+b)/(a+b))^(1/2)+8*csc(d*x+c)^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^4*(-csc(d*x+c)^2*(1
-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*(1
-cos(d*x+c))^2-2*a^4*(csc(d*x+c)-cot(d*x+c))-8*b^4*(csc(d*x+c)-cot(d*x+c)))*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-
csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2
-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^2/(a+b)/(a-b)/a^3+2*B/d*(-(-csc(d*x+c)
^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/
2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*
x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-
(a-b)/(a+b))^(1/2))*a^2*b+2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x
+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2+(-csc(d
*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b)
)^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3+(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((c
sc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+
c),(-(a-b)/(a+b))^(1/2))*a^2*b-2*(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-cs
c(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2-2*
(-csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^(1/2)*((csc(d*x+c)^2*a*(1-cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b
)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3+csc(d*x+c)^3*a^3*(1-cos(d*x+c))^3-csc
(d*x+c)^3*a^2*b*(1-cos(d*x+c))^3-2*csc(d*x+c)^3*a*b^2*(1-cos(d*x+c))^3+2*csc(d*x+c)^3*b^3*(1-cos(d*x+c))^3+a^3
*(csc(d*x+c)-cot(d*x+c))+a^2*b*(csc(d*x+c)-cot(d*x+c))-2*b^3*(csc(d*x+c)-cot(d*x+c)))*((csc(d*x+c)^2*a*(1-cos(
d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1))^(1/2)*(csc(d*x+c)^2*(1-cos(d
*x+c))^2-1)^2*(-(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1))^(5/2)/(csc(d*x+c)^2*a*(1-
cos(d*x+c))^2-csc(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)^2/a^2/(a-b)/(a+b)

Fricas [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sec(d*x + c)^(5/2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x
+ c) + a^2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(5/2)/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sec(d*x + c)^(5/2)/(b*cos(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + b*cos(c + d*x))^(3/2),x)

[Out]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + b*cos(c + d*x))^(3/2), x)